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Abstract 

Owing to increasing demand for catalytic operations in clean and carbon negative energy systems, development of catalysts and 

electrocatalysts has been gaining importance and interest has been growing in mixed oxides (perovskites) that are known for their 

chemical and thermal stability. In the present work, some perovskite catalysts/electrocatalysts, mostly with structures ABO3 and AxA’(1-

x)ByB’(1-y)O3 containing Co, Cr, La, Mo, Sr and V have been developed and studied in terms of electrical conductivity at increasing 

temperatures up to 1100 K.  Among the samples, La0.9Sr0.1Cr0.5V0.5O3, LaSr0.5V0.5O3 and La0.9Sr0.1Cr0.75Co0.25O3 had relatively higher 

conductivity. 
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Yüksek Sıcaklıkta Uygulamalar için Kükürde Dayanıklı Perovskit 

Elektrokatalizörler 

 
Öz 

Temiz ve karbon negatif enerji sistemlerinde katalitik operasyonların yaygınlaşmasıyla birlikte katalizör ve elektrokatalizörlerin 

geliştirilmesi de önem kazanmış olup, kimyasal ve ısıl açıdan dayanıklı karışık oksitlere (perovskitler) karşı ilgi artışı sürmektedir.  Bu 

çalışmada, temiz ve karbon negatif yaklaşımla hidrojen ve elektrik üretiminde kullanılmak üzere geliştirilmiş olan Co, Cr, La, Mo, Sr 

ve V içeren, genellikle ABO3 ve AxA’(1-x)ByB’(1-y)O3 yapısındaki bazı katalizör/elektrokatalizör perovskit maddeler elektriksel iletkenlik 

açısından 1100 K’e kadar artan sıcaklıkta incelenmiş, bunlar arasından La0.9Sr0.1Cr0.5V0.5O3, LaSr0.5V0.5O3 ve La0.9Sr0.1Cr0.75Co0.25O3 

bileşiklerinin daha iletken oldukları anlaşılmıştır.   

Anahtar Kelimeler: Katalizör, elektrokatalizör, perovskit 
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1. Introduction 

Global warming and environmental deterioration have been 

increasing with the extent of fossil fuel utilisation resulting from 

continual growth in global population and economy Baykara, 

(2018). Almost 100% of carbon dioxide (CO2) emission is known 

to originate from fossil fuel based primary energy supply (81%) 

and electricity production (66%) IEA (2017).  

Hydrogen as an energy carrier, Veziroglu et al (1989) and a 

clean critical fuel, Baykara (2005); and biomass and biocoal, 

Thraen et al (2016) in carbon negative electricity production via 

bioenergy carbon capture and storage (BECCS) approach, 

Newton - Cross and Gammer (2016) offer serious alternatives for 

bending down the steep CO2 curve, (Figueres et al (2017) and 

slowing down the global temperature rise.  

Presently hydrogen is mostly used as feedstocks and is 

generally produced from hydrocarbons and water via commercial 

methods. However, utilisation of hydrogen as a fuel is gradually 

being implemented, and additional sources of hydrogen are 

needed. Vastly available industrial byproducts including 

hydrogen sulfide (H2S), a toxic and corrosive substance, are 

attracting attention among new hydrogen sources. 

In recent years, parallel to the studies on solid oxide fuel cells 

(SOFCs) (Mori et al, 1997; Zha et al, 2005; Jiang et al, 2008; 

Fabbri et al, 2010) studies on electrocatalysts applicable to biogas 

fueled carbon fuel cells (CFCs) (Giddey et al, 2012; Gur, 2013; 

Coa et al, 2017) and H2S fueled electrochemical reactors 

(Athanassiou, 2007; Petrov et al, 2011; Ipsakis et al, 2015) have 

been in progress. Next generation of SOFCs, operating below 900 

K may be available in the near future (Wachsman and Lee, 2011; 

Fabbri et al, 2012; Gao et al, 2016). 

Blocking of active sites due to sulfur (S) adsorption and 

development of surface reactions leading to sulfidation of oxides 

appear to be the main reasons causing deterioration of catalytic 

electrodes, Gong et al (2007). Electrocatalysts that are used as 

electrode materials are expected to have chemical activity, 

electrical conductivity; chemical and thermal stability. These 

properties are found in mixed oxides, generally termed as 

perovskites. 

After CaTiO3 has been the first compound identified as 

‘perovskite’, all compounds with the ABO3 structure have been 

referred to as such. The general structure of perovskites is ABX3. 

A is a larger cation and B is a transition ion; X is an anion, Tejuca 

et al (1989). Since X is often oxygen, the representation ABO3 is 

widely accepted. When one of the earth alkali elements is in 

position A, and a first row transition metal of the periodic table is 

in position B; catalytic activity is defined by the transition metal. 

CFCs operating with biogas obtained from terrestial biomass 

can be effective in CO2 capture. Electrochemical reactors (Uzun 

et al, 2015; Kraia et al, 2017) and SOFCs (Vincent et al, 2011; Li 

et al, 2012; Afshar et al, 2015; Uzun et al, 2016; Wachowski et al, 

2018) fueled with H2S render hydrogen or electricity production 

possible from a hazardous industrial byproduct.  

 

 

In the present study, ABO3 and AxA’(1–x)ByB’(1–y)O3 type 

perovskite electrocatalysts, developed for electrodes of 

electrochemical reactors fueled with H2S containing feed streams, 

have been investigated in terms of electrical conductivity.  

The electrocatalysts may also be used as electrode materials 

in CFCs fueled by H2S containing product gas obtained by 

gasification of biomass. 

2. Materials and Method 

Details about methods of synthesis, characterization, and 

chemical performance testing of the catalysts are given elsewhere 

(Guldal et al, 2015; Guldal et al, 2017; Guldal et al, 2018).  

For studying electrical conductivity of the catalysts, pellets of 

0.02 m diameter and 0.0005 m thickness were prepared.         

Variation in the conductivity of the samples versus 

temperature was studied with the four point probe (FPPT) 

approach using the acquisition system described by Evcin et al, 

(2014). 

3. Results and Discussion 

Electrical conductivity measurements of the perovskite 

electrocatalysts were carried out covering the temperature range 

T: 425-1100 K approximately. Significant increase was observed 

in conductivity of electrocatalysts, proportional to increase in 

temperature (Figure 1, Table 1).  

Table 1. Measured Values of Conductivity () of 

Electrocatalysts 

Formulation  (S/cm) at 

Parametre Adı 
Tmin 

(425 K) 

Tmax 

(1100 K) 

LaVO3 5.3 x 10-6 1.6 x 10-2 

LaSr0.5V0.5O3 2.0 x 10-6 6.0 x 10-3 

LaCrO3 1.2 x 10-5 1.3 x 10-3 

La0.9Sr0.1CrO3 4.1 x 10-3 1.5 x 10-2 

La0.9Sr0.1Cr0.5Mo0.5O3 2.6 x 10-5 9.5 x 10-3 

La0.9 Sr0.1Cr0.25Co0.75O3 6.1 x 10-7 2.2 x 10-3 

La0.9 Sr0.1Cr0.75Co0.25O3 1.8 x 10-4 3.3 x 10-2 

La0.9 Sr0.1Cr0.5V0.5O3 1.0 x 10-1 1.2 x 10-1 

S: Siemens  

 Physical properties of the catalysts such as crystal 

phases, particle sizes (μm), elemental composition (%), specific 

surface area (m2/g); and chemical conversion performance (% 

H2S) are available elsewhere (Guldal et al, 2015; Guldal et al, 

2017; Guldal et al, 2018). 
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Figure 1: Electrical conductivity of LaVO3, LaSr0.5V0.5O3, LaCrO3, La0.9Sr0.1CrO3, La0.9Sr0.1Cr0.5Mo0.5O3, La0.9Sr0.1Cr0.25Co0.75O3, 

La0.9Sr0.1Cr0.75Co0.25O3, La0.9Sr0.1Cr0.5V0.5O3 

 

In all perovskite electrocatalyst samples La was chosen as 

element A. For A’, Sr was used. Cr was added as element B and 

B’ was Co or Mo or V (Table 1). 

Conductivity of samples LaSr0.5V0.5O3, LaVO3, 

La0.9Sr0.1Cr0.5Mo0.5O3, La0.9Sr0.1Cr0.5V0.5O3, 

La0.9Sr0.1Cr0.75Co0.25O3  and  La0.9Sr0.1Cr0.25Co0.75O3 kept 

increasing up to approximately 500 K (Figure 1).  

Between 500 K and 700 K conductivity appeared to be quite 

stabilized for almost all samples.  

Afterwards, curves of samples LaSr0.5V0.5O3, LaVO3 and 

La0.9 Sr0.1Cr0.25Co0.75O3 started climbing again.  

Conductivity of sample La0.9Sr0.1Cr0.5V0.5O3 has been higher 

than those of the rest throughout the temperature range, displaying 

a gradual decline with temperature.  

Conductivity curves of La0.9Sr0.1CrO3 and 

La0.9Sr0.1Cr0.75Co0.25O3 displayed similar trend, climbing 

gradually at temperatures greater than 600 K.  

Fluctuations were observed in curves of LaCrO3 and 

La0.9Sr0.1Cr0.5Mo0.5O3 after 700 K and 900 K.  

Reduced system costs are anticipated with low temperature 

(T ≤ 900 K) SOFCs owing to wider material choices, Wachsman 

and Lee (2011).  

Conductivity curves of the perovskite catalysts studied in the 

present work (Figure 1) appear to be quite stabilized at the 

mentioned low temperature range (T ≤ 900 K). 

Catalysts containing Cr and V had higher conductivity both at 

room temperature and at the highest measurement temperature. 

Best results were obtained with La0.9Sr0.1Cr0.5V0.5O3, followed by 

LaSr0.5V0.5O3 and La0.9Sr0.1Cr0.75Co0.25O3. 

The effect of V addition has been observed by comparing the 

conductivity values, at low and high temperatures, of 

La0.9Sr0.1Cr0.5V0.5O3 and La0.9Sr0.1CrO3. Throughout the 

temperature range of measurement superior conductivity of the V 

containing perovskite has been demonstrated. 

The effect of Cr addition has been studied through 

comparison of conductivity performance of Co containing 

perovskites La0.9Sr0.1Cr0.75Co0.25O3 and La0.9Sr0.1Cr0.25Co0.75O3. 

The sample with higher Cr content had higher conductivity. 

However, addition of V has been found to be more effective on 

conductivity. Although the sample La0.9Sr0.1Cr0.75Co0.25O3 

contained 1.45 times more Cr compared to La0.9Sr0.1Cr0.5V0.5O3, 

the latter sample displayed higher conductivity, owing to presence 

of V. 

Considering perovskites of the type LaxSryCrz(Mz)O3, 

electrical conductivity () at high temperatures varied with 

respect to M in the order M : V > Co > Mo (Table 1). 

For the electrocatalysts LaSr0.5V0.5O3, La0.9 Sr0.1Cr0.5V0.5O3 

and La0.9 Sr0.1Cr0.75Co0.25O3 the conductivity values were within 

similar range for those obtained with La and Cr containing 

catalysts reported in the literature (Mori et al, 1997; Jiang et al, 

2008; Wachowski et al, 2018) (Table 2). 

A correspondence between electrical conductivity and 

chemical activity (Guldal et al, 2015; Guldal et al, 2017; Guldal 

et al, 2018) of the perovskite electrocatalysts was not observed. 

For example, although LaCrO3, and its versions obtained by 

adding Sr and Co have shown highest chemical activity at high 

temperatures(Guldal et al, 2015; Guldal et al, 2017; Guldal et al, 

2018); V containing perovskites had superior electrical 

conductivity. 

Similarly, properties of the catalyst such as particle size and 

specific surface area (Guldal et al, 2015; Guldal et al, 2017; 

Guldal et al, 2018) did not seem to affect chemical activity or 

electrical conductivity. 
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Table 2: Electrical Conductivity Values of Similar Ceramic 

Materials 

Material T (K) 
 

(S/cm) 

LaCrO3 

(Mori et al, 1997) 
373 0.6-1.0 

LaCrO3 

(Jiang et al, 2008) 
1073 0.33 

La0.7Mg0.3CrO3  

(Jiang et al, 2008) 
1073 2.21 

La0.7Ba0.3CrO3  

(Jiang et al, 2008) 
1073 2.26 

SrFe0.75Mo0.25O3  

(Wachowski et al, 2018) 
1073 0.005 

4. Conclusion 

In the present work, sulfur resistant and chemically active 

perovskite electrocatalysts, developed for hydrogen and/or 

electricity production from H2S or biogas, have been studied in 

terms of electrical conductivity.  

Among the samples, La0.9Sr0.1Cr0.5V0.5O3, LaSr0.5V0.5O3 and 

La0.9Sr0.1Cr0.75Co0.25O3 were found to be the samples with higher 

chemical activity and electrical conductivity. 

All samples have been quite stable at temperatures below 900 

K. 
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